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Recap

• Definitions of sample space Ω, events, random variables, expectation, conditional 
probability, conditional expectation, linearity of expectation, independence of events 
and R.Vs, mutual vs pairwise independence, properties of independence, Bernoulli, 
Binomial, and Geometric RVs.

• The Probabilistic Method.  Examples.

• The Coupon Collector Problem.

• The DeMillo-Lipton-Schwartz-Zippel lemma.  Polynomial identity testing. 

• Application of DLSZ to finding perfect matchings in general graphs.



Tail inequalities

Bounds on the probability mass in the tail of a distribution.  Use to show that it’s 
unlikely a given R.V. 𝑋 will take on a value too far from 𝔼[𝑋].



Markov’s inequality

The most basic.  For non-negative R.V.s.  Uses nothing about it except its expectation.



Chebyshev’s inequality
Stronger guarantee when we have a good bound on variance.



Variance

• Definition: 𝑉𝑎𝑟 𝑋 = 𝔼 𝑋 − 𝔼 𝑋 2  

• Can simplify as: 𝔼 𝑋 − 𝔼 𝑋 2 = 𝔼 𝑋2 − 2𝔼 𝑋 2 + 𝔼 𝑋 2 = 𝔼 𝑋2 − 𝔼 𝑋 2.

Example: Let 𝑋 be an indicator R.V. for a coin of bias 𝑝.

• 𝔼 𝑋 = 𝑝.

• 𝑉𝑎𝑟 𝑋 = 𝑝 − 𝑝2 = 𝑝(1 − 𝑝).

What if we flip 𝑛 coins?



Variance

So, if we flip 𝑛 coins of bias 𝑝, we have 𝑉𝑎𝑟 𝑋 = 𝑛𝑝(1 − 𝑝).  Standard deviation 𝜎 =

𝑉𝑎𝑟 𝑋 = 𝑛𝑝 1 − 𝑝 .



Markov vs Chebyshev for coin flips
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Markov vs Chebyshev for coin flips
So, by using pairwise independence, we can get much sharper concentration.
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Later, we’ll see even stronger concentration bounds we can get using mutual 
independence.



Threshold phenomena in Random Graphs

Consider a graph 𝐺 on 𝑛 vertices where each possible edge is placed into the graph 
independently with probability 𝑝.  This is called the 𝐺𝑛,𝑝 random graph model.

It turns out that many graph properties have “threshold phenomena”: for some 
function 𝑓(𝑛), for 𝑝 ≪ 𝑓(𝑛) the graph will almost surely not have the property and for 
𝑝 ≫ 𝑓(𝑛) the graph almost surely will have the property (or vice-versa).

We will see one example here: the property of containing a 4-clique.



Threshold phenomena in Random Graphs

(1) Is the easier case, so let’s start with that:

• For each set 𝑆 of 4 vertices, define indicator R.V. 𝑋𝑆 for the event that 𝑆 is a clique.

• Let 𝑋 = σ𝑆 𝑋𝑠 denote the number of 4-cliques in the graph.

• We have 𝔼 𝑋 = σ𝑆 𝔼 𝑋𝑆 = 𝑂 𝑛4𝑝6 = 𝑜 1  for 𝑝 ≪ 𝑛−2/3.

• So, by Markov’s inequality, ℙ 𝑋 ≥ 1 ≤ 𝔼 𝑋 /1 = 𝑜(1).



Threshold phenomena in Random Graphs

For (2), we have 𝔼 𝑋 = Θ 𝑛4𝑝6 → ∞, but this is not sufficient to get ℙ 𝑋 = 0 = 𝑜(1).

For this, we will use Chebyshev’s inequality with  𝑡 = 𝔼[𝑋], giving:

ℙ 𝑋 = 0 ≤
𝑉𝑎𝑟 𝑋

𝔼 𝑋 2

So, if we can show that 𝑉𝑎𝑟 𝑋 = 𝑜(𝔼 𝑋 2), we will be done.



Threshold phenomena in Random Graphs

We can write variance as: 𝑉𝑎𝑟 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2 = σ𝑆,𝑆′ 𝔼 𝑋𝑆𝑋𝑆′ − 𝔼 𝑋 2.

Let’s now consider a few cases for 𝑆, 𝑆′:

• If 𝑆, 𝑆′ share at most 1 vertex in common, then 𝑋𝑠 and 𝑋𝑆′  are independent, so 
𝔼 𝑋𝑆𝑋𝑆′ = 𝔼 𝑋𝑆 𝔼[𝑋𝑆′] and the sum over all of these is at most 𝔼 𝑋 2. We can 
therefore cover these using the −𝔼 𝑋 2 term.

So, if we can show that 𝑉𝑎𝑟 𝑋 = 𝑜(𝔼 𝑋 2), we will be done.



Threshold phenomena in Random Graphs

We can write variance as: 𝑉𝑎𝑟 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2 = σ𝑆,𝑆′ 𝔼 𝑋𝑆𝑋𝑆′ − 𝔼 𝑋 2.

Let’s now consider a few cases for 𝑆, 𝑆′:

• If 𝑆, 𝑆′ share 2 vertices in common, there are at most 𝑂(𝑛6) such cases and each one 
has 𝔼 𝑋𝑠𝑋𝑆′ = 𝑝11.  So, overall, we get 𝑂 𝑛6𝑝11 = 𝑜 𝑛8𝑝12 = 𝑜 𝔼 𝑋 2 .

So, if we can show that 𝑉𝑎𝑟 𝑋 = 𝑜(𝔼 𝑋 2), we will be done.



Threshold phenomena in Random Graphs

We can write variance as: 𝑉𝑎𝑟 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2 = σ𝑆,𝑆′ 𝔼 𝑋𝑆𝑋𝑆′ − 𝔼 𝑋 2.

Let’s now consider a few cases for 𝑆, 𝑆′:

• If 𝑆, 𝑆′ share 3 vertices in common, there are at most 𝑂(𝑛5) such cases and each one 
has 𝔼 𝑋𝑠𝑋𝑆′ = 𝑝9.  So, overall, we get 𝑂 𝑛5𝑝9 = 𝑜 𝑛8𝑝12 = 𝑜 𝔼 𝑋 2 .

So, if we can show that 𝑉𝑎𝑟 𝑋 = 𝑜(𝔼 𝑋 2), we will be done.



Threshold phenomena in Random Graphs

We can write variance as: 𝑉𝑎𝑟 𝑋 = 𝔼 𝑋2 − 𝔼 𝑋 2 = σ𝑆,𝑆′ 𝔼 𝑋𝑆𝑋𝑆′ − 𝔼 𝑋 2.

Let’s now consider a few cases for 𝑆, 𝑆′:

• And finally, if 𝑆, 𝑆′ share all 4 vertices in common, then the total is just 𝔼[𝑋]  = 𝑜 𝔼 𝑋 2 .

So, if we can show that 𝑉𝑎𝑟 𝑋 = 𝑜(𝔼 𝑋 2), we will be done.

• So, overall we have 𝑉𝑎𝑟[𝑋] = 𝑜 𝔼 𝑋 2  as desired.
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